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In the quest to demonstrate Inertial Con-
finement Fusion (ICF) ignition of deuterium-
tritium (DT) filled capsules and propagating 
thermonuclear burn with net energy gain (fusion 
energy/laser energy >1), recent experiments on 
the National Ignition Facility (NIF) (Fig.1a) 
have shown progress towards increasing cap-
sule hot spot temperature (Tion>5 keV) and fu-
sion neutron yield (~1016), while achieving ~2x 
yield amplification by alpha particle deposition. 
At the same time a performance cliff was 
reached, resulting in lower fusion yields than 
expected as the implosion velocity was in-
creased. Ongoing studies of the hohlraum and 
capsule physics are attempting to disseminate 
possible causes for this performance ceiling.  

Experiments to understand the effect and 
mitigate potential sources of fuel preheat while 
improving the radiation symmetry in hohlraums 
are ongoing. Recent results show that higher 
energy preheat x-rays (hν>2 keV) are reduced 
in alternative hohlraum materials to pure Au 
such as uranium or by applying mid-Z liners to 
the inner wall surface. Furthermore, lower den-
sities or near vacuum hohlraum fills have 
demonstrated a strong reduction in the amount 
of preheat hot electrons generated by laser-
plasma instabilities. These experiments have 
also shown that the laser energy coupling into 
x-rays is improved by ~20% by reducing laser 
backscattering from the target.  

High resolution 3D simulations, validated by 
inflight capsule radiography data, have also 
shown that the tent holding the capsule and low 
mode radiation asymmetries have strong nega-
tive impacts on implosions by the hydrodynam-
ic instabilities they cause at stagnation (Fig. 1b). 
The relative importance of these factors de-

pends on the ICF design, i.e. capsule ablator 
(CH, HDC, Be) and laser pulse (High Foot, 
Low Foot, adiabat shaped-AS, Fig. 1a). Studies 
to mitigate low-mode asymmetries and investi-
gate alternatives to the tent mount are ongoing.  

a)    b)  

 
Figure 1. a) Lawson criteria Pτ of NIF DT fuel implo-
sions vs hot spot temperature (Tion) for various abla-
tors (plastic-CH, diamond-HDC and Be) and hohlraum 
fills (1.6 mg/cc for High Foot-HF and 3-Shock HDC, 
0.96 mg/cc for Low Foot-LF and 0.03 mg/cc for near 
vacuum hohlraums-VAC). b) The tent holding the cap-
sule inside the hohlram and low mode radiation flux 
asymmetries are potential culprits of performance lim-
its; they are observed at peak implosion velocity 
(R=0.3 mm capsule radius) and are simulated to have a 
negative impact on hot spot stagnation (R=0.05 mm). 

In upcoming ICF experiments with CH, HDC 
or Be capsules low mode asymmetries and hy-
dro-instabilities will be mitigated by optimizing 
the hohlraums and laser pulses to reach nearly 
1-D implosions that are well understood. These 
more robust designs will be then subjected to 
higher implosion velocities required to ap-
proach ignition. 

*This work was performed under the auspices of the 
U.S. Department of Energy by LLNL under Contract DE-
AC52-07NA27344.
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